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1. Introduction 
 This paper reviews test data and a fracture mechanical model designed for beams loaded 

perpendicular to grain by joints, see Figure 5. The aim is to show the capabilities of the 

model and to give a guideline for Eurocode 5. Splitting of beams loaded perpendicular to the 

grain by joints, was explained by fracture mechanics by Van der Put, [1] and [2]. An effort is 

made to make the theory more transparent and to show how well the method explains the test 

results of [3] and [4].  

 

1.1 Summary 

Splitting of beams loaded perpendicular to the grain by joints is explained by fracture 

mechanics by Van der Put as shown earlier [1] and [2]. Test data of two sources are being 

considered [3] and [4]. The test data can be divided into four groups. First, the joint is over-

designed compared to the splitting strength. Second, the joint start to yield at the moment of 

splitting. Third, the joint yields followed by hardening and finally splitting of the beam. 

Fourth, the joint is under-designed and splitting may still occur but probably not sooner than 

after the elongated holes have damaged the cross-section considerable. An important 

parameter to distinguish between the cases is the apparent value of GGc.  

In addition a model is presented to predict the capacity of fasteners located near the loaded 

edge based on the compression strength perpendicular to grain. The theory is given in 

Appendix II. It is shown that all the available test data can be explained. Simple design 

equations that derived to be considered by code writers. 

 
2 Fracture mechanic approach 
As several modes of crack propagation in two directions are expected to occur the energy 

approach is convenient to obtain solutions for splitting of beams. As mentioned in the 

RILEM State of the Art Report on fracture Mechanics (RC-110-TFM, Research Notes 1263, 

ESPOO 1991) that the energy approach does not show good results, a better concept is 

derived and verified in [2] and applied for notched beams. This derivation is also given in 

appendix I. As the behaviour of beams loaded perpendicular to grain by joints is comparable 

with notched beams the same method is applied, [1] and [2]. The derivation with slightly 

different constants is given in the following. 
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3. Fracture of the beam caused by joints. 
The same principle and superposition method as given in [2] for notched beams is applied 

when joints load the beam perpendicular to the grain near the loaded edge. The difference of 

beam deformation in case of the not-cracked situation and the cracked state is calculated as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Joint loaded the beam perpendicular at grain at lower part 

 

For a connection as shown in Figure 1 the following applies after a stable split occurs. The 

crack separated parts divide the bending moment of the initially not-cracked cross-section. A 

bending moment M is divided into two parts, M2 is taken by the upper part of the beam 

(stiffness I2) and M1 and the shear force (V) is taken by the lower part (stiffness I1). Normal 

forces can be neglected as they are of second order influence. The total crack length is set to 

2=2h. The rotation  at the end of crack length =h can be determined for both part by: 

 

being the moment at the end of the crack or: 

 

 

where: 

which is the mean bending moment over half the crack length h which corresponds to a  

bending moment of: 

The relative deflection consisting of a shear and bending component is: 
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Furthermore: 

 

Where  is the L/h ratio 

Substitution of  = 2/3- in  

  

The potential energy of the symmetrical half of the beam is W = V /2 were is the  

deflection in the middle. When V is constant the increase of the crack length x will increase 

the deflection with . When the loss of potential energy W becomes equal to the energy of 

the crack formation, crack propagation occurs, with x = h  According to the principle 

[1] is 

At the constant maximal value of the shear force V fracture occurs when 

 

At the start of crack propagation Gf should be high enough to propagate also in width 
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 Both G’s are assumed to be covered by the apparent value of Gf
’
. Determining for total 

fracture is the combined mode I and II in length direction, see appendix I.  

 

Substitution of the above in eq.(5) and for small values of and E/G=18 it follows: 

The second term in the denominator appears to have a small influence for small values of 

and in the available test data. Also for increasing (stable) crack extension (or increase of  

) the eq.(6) becomes eq.(7) for or  0 giving an upper limit for failure.  

For higher values of L/h ratio of a simply supported beam) not tested in [5], for instance 

the splitting strength will not be determining over bending or shear failure and other 

failure mechanisms depending on the loading. 

 

4. Failure caused by joints [4] 
This chapter comprises a reaction on CIB/W18 paper 32-7-2 [4] to explain the test results. 

The dowels used can be regarded as rigid dowels as the slenderness ratio was b/d = 4 where b 

is the middle member thickness. 

The configuration of the joint considered in the next chapters is shown in Figure 5. 

 

4.1 Explanation of the test results of paper CIB/W18/32-7-2 

It was reported in [4] that in all tests plastic deformation of the wood occurred prior to 

splitting. Figure 6 of the paper [4] shows plastic deformations from 4 up to 12mm. 

Obviously, one dowel of 10 mm diameter used as bearing plate is unable to force bending 

failure of the whole beam. The embedment 

stresses calculated as Fu/bd are high compared 

to the compression strength perpendicular to the 

grain, Table 1. This so-called hardening is due 

to confined dilatation perpendicular to the grain 

and depends on the deformation and thus the 

ability to spread the concentrated load as shown 

in Figure 3. This can be explained by the 

equilibrium method of constructing a stress 

field in the specimen that satisfies the 

equilibrium and boundary conditions and that 

nowhere surmounts the failure criterion. As 

shown in appendix II it can be derived that the 

bearing strength can be expressed as: 
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with c  1 and a spreading slope 1:1.5 Where Ls = 3a = 3he is the spreading length and a the  

loaded edge distance. In Table 1 the bearing stress fs and compression stress perpendicular to 

grain fc.90 are derived from the experimental values with eq.(8). In [4] test are performed with 

a single and with two dowels as shown in Figure 3. According to the theory of Appendix II 

two dowels in load direction, perpendicular to grain, can build equal resistance only if they 

have the same spreading surface. The spreading is equal when:  

and both pins have a spreading length of 3a1/2 

 

Table 1: Test data of [4]  
Specimen No.of d a Spacing a/h Fu =2V fs =Fu/db 3a/d fc.90 

 test mm mm mm  kN Mpa  Mpa 

 beam: b.h=40.196mm 1 dowel      Eq.(8) 

S1-2020 2 10 40 0 0.20 7.6 19.0 3.46 5.5 

2025 2 10 50 0 0.26 7.7 19.3 3.87 5 

2030 2 10 60 0 0.31 8.3 20.8 4.24 4.9 

2035 2 10 70 0 0.36 9.3 23.3 4.58 5.1 

2040 2 10 80 0 0.41 10.3 25.8 4.9 5.3 

2050 2 10 100 0 0.51 10.6 26.5 5.48 4.8 

2060 2 10 120 0 0.61 15.5 38.8 6 6.4 

2070 2 24 140 0 0.71 14.7 15.3 4.18 3.7 

        mean 5.1 

 beam: b.h = 40.196 mm 2 dowels    c.o.v 0.15 

S2-2035 1 10 70 30 0.36 9.9 12.4 3.24 3.8 

2040 1 10 80 30 0.41 12.2 15.3 3.46 4.4 

2050 1 10 100 30 0.51 14.7 18.4 3.87 4.8 

2060 1 10 120 30 0.61 14.9 18.6 4.24 4.4 

2070 2 10 140 30 0.71 13.2 16.5 4.58 3.6 

        mean 4.1 

 beam: b.h = 40.397mm 1 dowels    c.o.v. 0.12 

S1-4010 3 10 40 0 0.10 7.2 18 3.46 5.2 

4015 2 10 60 0 0.15 7.8 19.5 4.24 4.6 

4020 2 10 80 0 0.20 9.4 23.5 4.9 4.8 

4025 2 10 100 0 0.25 10.4 26 5.48 4.7 

4030 3 10 120 0 0.30 12.9 32.25 6 5.4 

4035 1 10 140 0 0.35 12 30 6.48 4.6 

4040 2 10/24 160 0 0.40 16.5/18.3 41.3/19.0 6.93/4.47 6.0/4.3 

4050 2 10 200 0 0.50 14.8 37 7.75 4.8 

4060 2 10/24 240 0 0.60 18.9/20.1 47.3/20.9 8.49/5.48 5.6/3.8 

       d=10mm mean 5.1 

 beam: b.h = 40.397mm 2 dowels    c.o.v. 0.09 

S2-4018 1 10 70 30 0.18 9.8 12.3 3.24 3.8 

4020 1 10 80 30 0.20 10.6 13.3 3.46 3.8 

4030 1 10 120 30 0.30 19.6 24.5 4.24 5.8 

4040 1 10 160 30 0.40 17.1 21.4 4.9 4.4 

4043 1 10 170 30 0.43 19.6 24.5 5.05 4.9 

4050 1 10 200 30 0.50 18.1 22.6 5.48 4.1 

4060 1 10 240 30 0.60 24.8 31 6 5.2 

4070 1 24 280 30 0.71 35.6 18.5 4.18 4.4 

       d=10mm mean 4.6 

        c.o.v 0.15 

S1 – tests with one dowel 

S2 – test with two dowels 

3 3 3 21 2 2 2 1a a a a a    or /
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Mean fc.90 values of Table 1. 

Series Per dowel 

fc.90 [Mpa] 

Mean 

S1-200 5.1 5.1 

S1-400 5.1 

S2-200 4.1 4.4 

S2-400 4.6 

S1 refers to tests with one dowel,  

S2 refers to tests with two dowels. 

 

In tests with two dowels the spacing is small, 3d. It appears from this data and also from other 

investigations that the spacing between the two dowels being less than 4d result in reduction 

of strength by early local failure. This explains the reduction of 4.4/5.1 in the table above. 

When full bearing is activated at about 1.5d deformation only 1.5d of spacing is left. The 

Eurocode5 code should therefore specify 4d as the minimum distance to avoid this effect 

instead of 3d. The mean strength fc.90 = 4.1 MPa for the (three) tests with dowels of 24 mm 

diameter compared to 5.1 MPa for the 10 mm diameter dowels can be explained by the 

volume effect. 

where n = 3v/1.2 = 2.5v and v is the coefficient of variation of the sample in question. In this 

case n = 0.25 

In Figure 4 it is shown that with eq.(13), derived later, the results with one dowels can be 

explained. The same appears for the tests with two dowels (no figure given).  

It can be concluded that all test results of [4] can be explained by the spreading effect of 
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compression perpendicular to grain theory as given above although finally all tests ended by 

splitting of the beam. It means that actually yielding of the joint started followed by 

hardening and ending with splitting. As the yielding opens up the cracks at the shear plane of 

the joint these tests are not particularly suited to study the perpendicular to grain splitting. 

The upper value for the local strength when the spreading is more than adequate could not be 

determined as those values were omitted [4]. 

 

5 Final state of failure of connections with dowels type fasteners 
The previous chapter dealt with a special case of rigid dowels where the spreading of the 

compression stresses could be considered uniform in beam depth. In this chapter a more 

general approach is given dependent of dowel slenderness. 

After the fastener starts 

to yield in bending, the 

resistance of joints with 

long fasteners still 

increases, showing only 

flow or hardening at 

increasing deformation. 

As shown in [6] and [7] 

this is due to the 

deformed shape of the 

fastener particularly for 

nails. The shape of the 

deformed nail compares 

well with a logarithmic 

spiral, where at the final 

stage the nail is bend 

over a large angle even up to nearly 90
0
. The nails acts as a thin shell showing equilibrium of 

the embedment stresses with the normal forces in the shank and even yielding of the steel 

shank may occurs, for instance in the situation shown in Figure 5. In that case only the 

effective length of the shank takes part in the bearing. The spreading effect mentioned in the 

previous chapter can no longer be considered in one plane as with rigid dowels. The limited 

effectiveness of the shank length in spreading should be taken into account as far as it’s 

smaller than half the beam thickness. For slender dowels full bearing across the whole middle 

beam is possible when sufficient deformation is able to develop. Another fastener type where 

the effective length is smaller than half the middle member thickness is the punched metal 

plate. For those cases eq. (8) is transformed into: 

where: 

A1 and A0 are the spreading and loaded surfaces, respectively. 

Ls  is the spreading length along the grain 

t half the middle member thickness, b/2, of the three member joint assuming the loaded 

edge distance is such that spreading across half the member depth is assured. 

d is the effective length of the fastener  

d is the fastener diameter 
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If the fastener ends in the middle beam as shown in Figure 5. The load per shear plane of the 

joint per fastener becomes: 

Thus total for n fasteners per shear plane 

where Ls/n is actually the spreading length per fastener, so with eq.(9) it becomes.  

When the bearing length is half the member thickness  d = b/2 as was the case in [4], eq.(12) 

becomes:  

When < b/2, the penetration depth of the fastener ends within the middle member. For long 

nails with a penetration length of 12d then 3d at the point is needed for clamping, 3d for the 

anchoring (withdrawal capacity) leaving 6d for bearing. In that case 2d=12d for two nails in 

both shear planes of the three member joints and eq.(12) becomes 

 

In eq.(10) to eq.(14) the spreading length Ls=ar+3a where ar is the width of the fastener 

pattern, see Figure 5. 

 

5.1 Summarising: 
The bearing strength of fasteners close to the loaded edge is smaller than the embedment 

strength as calculated in designing joints by the timber design code. The model that takes this 

phenomenon into account is as follows: 

For nails with penetration depth of more than 12d: 

for b 12 d 

and 

where: 

F   is the ultimate load of the middle beam  

b width of the beam (middle member) 

n the number of fasteners/ shear plane 

d fastener diameter, in mm 

Ls is the  

a greatest distance to the loaded edge, Figure 5  

ar the row length of the fastener pattern 
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Table 2: TU-Karlsruhe test data No.1: Joint with nails 
Type No.of d rows Col. a=h ar Fu=2V c.o.v. fc

 ’
 fc GGc =L /h F/bh 

Test tests  m N   Mean  Eq(12) Eq.(13) Eq.(7)   

NAILS  [mm]   [mm] [mm] [kN]  [MPa] {MPa] [N/mm
1.5

]  [MPa] 

 beam: b.h = 40.180 mm           

L+A1 8 3.8 5 1 28 76 8.25 0.16 12.1 3.7 13.9 2.37 7.37 

L7+A2 4 3.8 5 1 47 76 10.94 0.21 13.8 4.3 13.3 2.37 5.82 

A3 3 3.8 5 1 66 76 11.93 0.04 13.4 4.2 11.3 2.37 4.52 

A4 3 3.8 5 1 85 76 13.40 0.07 13.7 4.2 10.2 2.37 3.94 

A5 3 3.8 5 1 104 76 18.90 0.21 17.8 5.5 11.7 2.37 4.54 

 beam: b.h = 40.180 mm    mean 14.2 4.4 12.1   

L6+B1 4 3.8 5 2 47 76 12.73 0.05 11.4 3.5 15.5 2.37 6.77 

B2 3 3.8 5 3 66 76 18.87 0.24 12.2 3.8 17.9 2.37 7.15 

B3 3 3.8 5 4 85 76 21.13 0.26 10.8 3.3 16.1 2.37 6.21 

B4 3 3.8 5 5 104 76 27.83 0.12 11.8 3.6 17.2 2.37 6.69 

 beam: b.h = 40.120 mm    mean 11.6 3.6 16.7   

C1 3 3.8 2 1 28 76 9.53 0.12 22.1 6.8 15.3 2.18 8.51 

C2 3 3.8 2 1 28 57 8.07 0.05 20.0 6.2 13.0 2.26 7.21 

C3 3 3.8 2 1 28 38 6.80 0.02 18.1 5.6 10.9 2.34 6.07 

C4 3 3.8 2 1 28 19 6.42 0.12 18.6 5.7 10.3 2.42 5.73 

C5 3 3.8 1 1 28 0 6.95 0.20 22.3 6.9 11.2 2.50 6.21 

C6 3 8 1 1 28 0 6.05 0.13 13.2 5.8 9.7 2.50 5.40 

 beam: b.h = 40.180 mm    mean 19.1 6.2 11.7   

L8 1 8 1 1 28 0 5.20 - 11.2 5.0 8.8 2.50 4.64 

 

6 Analyses of TU-Karlsruhe testdata  
The test data is given in Tables 2 to 4. The parameters correspond to Figure 5. The ultimate 

load is given for two shear planes and therefore represent the total load on the middle beam 

loaded perpendicular to the grain. First a distinction has to be made to what category Series 

belong. Are the joints “over-designed” or “under-designed” compared to the splitting 

strength?   

In Series B the nails are still loaded to a low level when splitting occurs, indicated by low fc 

and fc’ values compared to Series A and C, Table 2. Apparently the joints are “over-

designed”. Despite the variation in number of nails from 10 to 25 the parameter GGc =16.7 

N/mm
1.5

 (c.o.v. is 0.07) remains at the same level. The other Series A and C show lower 

values for GGc which is a indication of a different behaviour.  

For series C, with long nails, the working or effective length, d according to eq.(12), of the 

spiral shape of the deformed nail, becomes larger than half the middle member thickness and 

thus d is limited to b/2 and eq.(13) applies. From Table 2 it follows that the mean fc value of 

Series C is 6.2 N/mm
2
 (c.o.v. 0.09). This value can easily be explained by the volume effect. 

The mean fc value in [4] was 5.1 for dowels of 10 mm diameter. In Series C the nails are 3.8 

mm diameter so: 

In this case the fit indicates n = 0.18.  

 

The influence of the row length ar is examined by the Series G1.1 to G1.4, Table 4, having the 

same geometric parameters except the row length ar Figure 5. The strength is again governed 
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by eq.(13). This Series is taken because it can be expected to follow the theory better than 

Series C where joints are very high loaded at fracture. The influence given in Figure 6 and 

compared to the provision in the draft German design standard for row length. 

 

Series A and Series V5 to V10 of Table 3, also show a low value for the GGc parameter that 

probably is caused by the number of nails being below the critical number as will be 

explained later. Confirmation by tests with more nails is necessary to estimate this critical 

number for Series V. 

 

As mentioned earlier low values of fc
’
 in Table 3 indicate that splitting of the beam is the 

determining failure mechanism and not the joint. This will be discussed below.  

 

Table 3: TU-Karlsruhe test data No.2 
Type Fastener No.of d Rows col a=h ar Fu =2V 

 

F/bh fc
 ’
 GGc =L/h GGm 

 type Tests  m n   mean  Eq(12) Eq.(7)   

   [mm]   [mm] [mm] [kN] [Mpa] [Mpa] [N/mm
1.5

]   

 beam:b.h = 100.1200mm         

V5 nails 1 4.2 10 4 300 205 75 2.48 8.44 14.4 1.42 39.7 

V10 nails 1 4.2 10 4 600 205 119 1.98 9.96 13.3 1.42 31.7 

 beam: b.h = 100.1200 mm      mean 9.2 13.9   

V2 dowels 1 16 3 2 300 205 90 3 6.91 17.5 1.43 48.2 

V23 dowels 1 16 3 2 900 205 190 2.11 8.99 12.3 1.43 33.7 

V3 dowels 1 16 3 4 300 205 112 3.73 6.08 21.7 1.43 59.9 

V9 dowels 1 16 3 6 600 205 179 2.99 5.91 20.1 1.43 48.0 

V4 dowels 1 16 2 2 300 205 65 2.17 6.11 12.6 1.37 34.1 
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Figure 6: Influence of row length of fastener pattern ar  
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Figure 7: Failure of the joint, test Series G  

 beam: b.h = 100.600 mm      mean 6.8 16.8   

V11/12 dowels 2 16 3 4 300 205 127 4.23 6.89 20.1 0.94 38.9 

V13/14 dowels 2 16 3 2 450 205 190 4.22 12.3 17.4 0.94 38.8 

V26 dowels 1 16 3 2 450 205 220 4.89 14.2 20.1 1.4 54.9 

V24 dowels 1 16 3 2 150 205 70 4.63 6.93 19.0 1.4 54.7 

V27 dowels 1 16 3 2 150 205 63 4.17 6.23 17.2 0.44 26.3 

V25 dowels 1 16 3 2 300 205 103 3.43 7.91 16.3 1.4 38.5 

V28 dowels 1 16 2 2 150 205 56 3.73 6.8 15.3 0.83 32.3 

 beam: b.h = 100.1200 mm      mean 8.8 17.9   

V15/16 split-ring 2 65 2 2 300 205 135 4.49  21.3   

V17/18 split-ring 2 65 2 2 450 205 180 4.00  16.5   

V6 split-ring 1 65 1 4 600 0 184 3.06  20.6   

V7 split-ring 1 65 2 2 600 205 117 1.95  13.1   

V8 split-ring 1 65 2 2 300 300 89 2.98  17.3   

V1 split-ring 1 65 2 2 300 205 113 3.76  21.9   

         mean  18.4   

 

In Table 4 all Series show GGc values smaller than the critical value of 17 N/mm
1.5

 The 

strength values Fu are higher than according to the Johanson equations. This also can be 

expected by the under dimensioned joints and by possible hardening. Series G5.1 with only 4 

nails per shear plane is 0.85 times as strong as other Series with a comparable beam and 8 

nails. For a “small” number of high loaded nails yielding of the nails causes not direct 

splitting of the beam probably because the crack opening is not yet critical. With a “small” 

On the vertical axes 
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number of nails splitting becomes finally determining and apparently independent of the 

number of nails at a value for the apparent parameter GGc = 12.2 N/mm
1.5

 as will be 

discussed in the next chapter. Series G6, joints at the end of a cantilevered beam, has against 

the rules a nail distance of 7mm or 1.75 d, in stead of 4d. This obviously reduces the strength, 

as the hardening effect can’t fully develop at the weakest nail.  

 

Table 4: TU-Karlsruhe test data No.3 
Type Fastener No.of d rows col. a=h ar Fu=2V c.o.v. f'c GGc  F/bh 

 Type tests  m n   mean  Eq(12) Eq.(7)   

   [mm]   [mm] [mm
] 

[kN]  [Mpa] [N/mm
1.5

]  [Mpa] 

  beam: b.h = 100.250 mm         

G1.1 Nails* 3 4.0 2 4 100 20 37.3 0.07 18.4 11.2 2.60 3.73 

G1.2 Nails* 3 4.0 2 4 100 60 41.7 0.15 19.4 12.5 2.53 4.17 

G1.3 Nails* 3 4.0 2 4 100 110 42.9 0.12 18.7 12.9 2.40 4.29 

G1.4 Nails* 3 4.0 2 4 100 220 48.0 0.08 18.6 14.4 2.12 4.8 

G1.5 Nails* 3 4.0 2 4 150 60 53.0 0.09 20.7 10.6 2.53 3.53 

G1.6 Nails* 3 4.0 2 4 150 110 57.6 0.18 21.5 11.5 2.40 3.84 

G1.7 Nails* 3 4.0 2 4 150 220 71.1 0.07 24.3 14.2 2.12 4.74 

G2.1 Nails* 2 4.0 2 4 100 20 35.7 - 17.6 10.7 2.00 3.57 

G2.2 Nails* 2 4.0 2 4 100 60 39.0 - 18.2 11.7 1.50 3.90 

  beam: b.h = 80.250 mm   mean 19.7 12.2   

G3.1 Nails* 3 4.0 2 4 100 60 34.9 0.13 18.2 13.1 2.53 4.36 

  beam: b.h = 120.250 mm   mean 19.9 11.6   

G3.2 Nails* 3 4.0 2 4 100 60 46.2 0.09 19.6 11.6 2.53 3.85 

G3.3 Nails* 3 4.0 2 4 100 60 46.7 0.04 19.8 11.6 2.53 3.89 

  beam: b.h = 100.250 mm   mean 19.9 11.6   

G3.4 Nails* 3 6.0 2 4 100 60 44.3 0.05 13.8 13.3 2.53 4.43 

  beam: b.h = 100.400 mm        

G4.1 Nails* 3 4.0 2 4 100 60 39.6 0.05 18.4 13.3 1.95 3.95 

G4.2 Nails* 3 4.0 2 4 160 60 51.7 0.20 19.7 12.3 1.95 3.23 

  beam: b.h = 100.150 mm   mean 19.1 12.8   

G4.3 Nails* 1 4.0 2 4 90 60 47.3 - 23.0 12.2 2.53 5.26 

  beam: b.h = 100.250 mm        

G5.1 Nails* 3 4.0 2 2 100 60 35.6 0.22 23.4 10.7 2.52 3.56 

G5.2 Nails* 3 4.0 2 2 100 60 33.6 0.18 22.1 10.1 2.52 3.36 

G5.3 Nails* 3 4.0 2 4 100 60 42.2 0.09 19.7 12.7 2.52 4.22 

 mean 21.7 11.2  

G6.1 Nails* 2 4.0 2 4 100 20 18.8 - 9.3 11.3 2.48 3.77 

G6.2 Nails* 2 4.0 2 4 100 20 23.5 - 11.6 14.1 2.16 4.71 

 *) ring shanked nails with steel side members mean 10.5 12.7   

 

7. Splitting of the beam  
The derived formulas predict stable crack propagation until only shear deformation becomes 

determining, mode II fracture, resulting in unstable crack propagation. This results in a 

simple formula given by eq.(7). This equation exactly applies for joints as end supports (and 

notched beams).  

For over-designed, thus “low” loaded joints the splitting strength of the beam, expressed in 

GGc, is determining as primary failure mechanism. Series B2 to B4 of Table 2 are examples 
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where the joints are loaded to a low degree and the number of nails have no influence on the 

splitting capacity, the mean value of GGc = 17.1 N/mm
1.5

 

However, when the joint is designed less strong the fasteners are higher loaded and yielding 

may occur at the time of splitting.. For even further under designed joints compared to the 

splitting strength of the beam the joints may become very high loaded and yielding and/or 

hardening occur prior to splitting. 

 

Assume that a force Vn leads to the plastic flow of one fastener and with n fasteners the total 

shear force of eq.(5) becomes V = n Vn. If Vc is the critical shear force obtained with a critical 

number of fasteners nc. That means that splitting of the beam and first flow of the fasteners 

occur simultaneously, than Vc =  nc Vn so V  = n Vn / nc and eq.(5) changes into eq.(15).  In 

case the number of fasteners is lower than the critical number, until a certain minimum, there 

is a decrease of the apparent parameter GGc in proportion to (n/nc). This applies until a 

minimum value of n because of the low loading of the beam and the relatively small “initial” 

crack length. For n values below that minimum also splitting is determining independently of 

the number of fasteners and may occur after the flow or hardening behaviour of the joint 

when cracks are sufficiently opened. 

For Series B1, with n = 10 the value of GGc = 15.5 N/mm
1.5

 was calculated. The difference 

17.0/15.5 = 1.10 equals the factor nc /n = (12.2/10)= 1.1 where the critical number of 

fasteners nc is taken as 12.2.  
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The reduction of GGc in proportion to n/nc goes down to values of n/nc  0.5 to 0.4 as for 

Series A, where 5 dowel fasteners are used and the mean GGc = 12.0 N/mm
1.5

. Taking the 

mean value of GGc = 17.1 N/mm
1.5

 of Series B as a starting point the critical number of 

fasteners is 10 because 17.1/12= 1.43 = nc /n = 10/5. The critical number of fasteners nc in 

series A and B is almost the same, 10.0 and 12.2 respectively. In Figure 8 the mean test 

values of the test series A and B are presented together with the theoretical prediction based 

on eq.(7) and on nc  = 11.  For less than five dowels, Series C, first yielding of the nail will 

occur and hardening will start. However, after some hardening the critical crack length (and 

width) is formed and splitting will occur. For this reason the joints with 2 fasteners, Series C1, 

are after strong hardening as strong as the joints with 5 fasteners, Series L+A1 and L7+A2.  

The same reduction effect applies for Series V with dowels, Table 3. For Series V3, V11/V12 

and V9, with n =12 and n = 18 fasteners, respectively, the fc values are rather low compared to 

the other tests while the mean of GGc  20.5 N/mm
1.5

 is high. For the other Series V with n 

= 4 and 6 the GGc is reduced to 12.6 and 16.5, respectively. This leads to a assumed critical 

number of dowels nc   8.6. The result is presented in Figure 9. 

 

Determining in design of the splitting strength are the joints where the fastener yield and 

hardening finally results in splitting.  This applies for all Series G , Series C and A with mean 

value for  GGc of 12.1,  11.8 and 12.0 N/mm
1.5

 respectively. 
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Figure 9: Splitting of the beam, Series V and Equation (7) 
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7.1 Design proposals for splitting of the beam  
The leading general equation for splitting of the beam is eq.(7), which can be rewritten as: 

 

What is the appropriate value for the parameter GGc. For the test series where the joint do 

not govern the splitting, Series B, Series V with beam height 1200 and 600 mm (dowels). 

The weighted mean of GGc = 18.5 N/mm
1.5

. This value is about 3 times higher with respect 

to mode I failure of notched beams indicating a reduced value of the apparent fracture energy 

of mode II, due to the mixed I-II mode at failure. For the series where the joint were 

determining, Series A, C and G the weighted mean of factor GGc = 12 N/mm
1.5

.  The mean 

lower bound value for C1 in eq.(16) now becomes  C1=(GGc /0.6)= 15.5 N/mm
1.5

. 

Estimation of the characteristic lower bound of C1= 15.5*2/3 = 10.3 N/mm
1.5

.  

 

Design proposal 1: 

The shear capacity of the middle member is: 

for he 0.7 h 

 

To simplify eq.(16) the tangent line can be taken as shown in Figures 8 and 9 by the dotted 

line. It can be derived that the tangent point is at  = 0.5 and the equation of the dotted line is: 

 

 

8. Conclusions 
- A fracture mechanic model is able to explain the test data related to splitting of the beams 

loaded perpendicular to grain by joints as given in CIB/W18-22-7-2.  

 

- The fracture mechanics parameter GGc plays an important part in the evaluation and 

interpretation of the test data. The apparent value of GGc calculated on the basis of the 

tests differs for high loaded joints, which show large deformation at splitting and for 

over-designed low loaded joints, which do not show plastic deformation prior to splitting. 

- When the beam splits and the joints are loaded below their capacity, as in Series B of 

Table 2, Series V with ring-dowels and joints with more than 6 dowels in Table 3 the 

apparent value for GGc is between 17.1 and 20.5 N/mm
1.5

. 

- When yielding and hardening of the fastener occurs prior to splitting the apparent 

value for the fracture mechanics parameter becomes ((GGc)(n/nc)) and changes 

proportional to (n/nc), where nc is the critical number of fasteners and n the actual 

number of fasteners.  This critical number indicates the boundary between both 

situations. The lower bound for the apparent GGc  parameter is probably  12 
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N/mm
1.5

 as for test Series A, C and G and probably independent of the number of 

nails. 

- When joints are further under-designed with respect to the splitting strength of the 

beam the joint can show large plastic flow and hardening too. However, splitting may 

occur finally when the cross-section is badly damaged by the large elongation of the 

holes. 

 

- The derived formulas predict a stable crack propagation until the work by shear alone 

becomes determining leading to a simple formulae, eq.(7). 

 

- Design codes guidelines for the splitting strength capacity of beam exposed to 

perpendicular to grain loads by joints as shown in Figure 5 are given in eq.(17) and a 

simplified formula in eq.(19) 

 

The high embedment stresses of a dowel loaded perpendicular to the grain can be 

explained by confined dilatation perpendicular to the loading direction as shown in 

appendix II. Formulae derived from this approach are given in Chapter 5.1  
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